Course Syllabus EGCI 331 Introduction to IC Design

1.	Program of Study	Bachelor of Engineering Program in Computer Engineering (International Program)
2.	Course Code/Title	EGCI 331 Introduction to IC Design
3.	Number of Credits	4 (4-0-8) Credit (Lecture-Lab-Research)
4.	Prerequisites	EGCI 231
5.	Type of Course	Major Course (Required Major)

6. Session / Academic year

This course will be offered every the third trimester starting from the academic year 2008.

7. Course Conditions Class size will be in the range of 5-40 students.

8. Course Description

NMOS and CMOS integrated circuit technologies; properties of NMOS and CMOS circuits; calculation of parameters in circuits, static and dynamic MOS circuits; system design; circuit layout drawing and testing; computer arithmetic; performance evaluation; synthesis of digital circuits from models; modeling and simulation; fault models and testing the use of CAD tools in circuit design.

9. Course Objectives

After successful completion of this course, students will be able to

- 9.1 Gain an in-depth understanding of theories related to digital IC design.
- 9.2 Understand steps and procedure of circuit design.
- 9.3 Implement IC for industrial and engineering applications related to IC development tools.

10. Course Outline

week	Topics	Hours		Teaching	Instructor	
		Lecture	Lab	Self-	methods/multi	
				Study	media	
1	History and overview.	4	0	8	Lecture	Asst.Prof.
	Integrated Circuit (IC)					Decha
	technology developments.					Wilairat
2	Introduction to MOS	4	0	8	Lecture,	
	transistors : characteristic				exercises	
	and operation.					
3-4	Introduction to CMOS	8	0	16	Lecture,	
	digital ICs such as gates				exercises and	
	and flip-flops.				case studies	
5	NOS and CMOS IC	4	0	8	Lecture and	
	fabrication processes				exercises	
	overview.					

week	Topics	Hours		Teaching	Instructor	
		Lecture	Lab	Self-	methods/multi	
				Study	media	
6	Introduction to CAD tools	4	0	8	Lecture,	
	for IC design with basic				exercises and	
	layout rules (MOSIS).				case studies	
	Midterm Examination				TBA	
7	CMOS component design	4	0	8	Lecture and	Asst.Prof.
	procedures.				exercises	Decha
						Wilairat
8-9	Digital IC design and	8	0	16	Lecture,	
	synthesis with CAD tools.				exercises and	
					case studies	
10	Modeling, simulation,	4	0	8	Lecture and	
	fault models and testing				exercises	
11	Digital application	4	0	8	Lecture,	
	circuits : project				exercises and	
	assignments				case studies	
12	Final Examination				TBA	
	Total	44	0	88		

11. Teaching Method

Lecture, group discussion, and oral presentation.

12. Teaching Media

Lecture handouts, transparency notes, multimedia, CAI, etc.

13. Measurement and Evaluation of Student Achievement

Evaluate student's achievement from:

13.1 Ability to apply the knowledge to solving engineering problems.13.2 Ability to analyze engineering problem systematically.

Student's achievement will be evaluated according to the faculty and university standard, using the symbols: A, B, B+, C, C+, C, D+, D and F.

Weight:					
1. Midterm exam		30 %			
Final exam		35 %			
3. Homeworks and quizzes					
4. Assignments and Project					
Total			100 %		
Grading scale	Grade	Point			
90 - 100	А	4.0			
85 - 89	B+	3.5			
80 - 84	В	3.0			
75 - 79	C+	2.5			
70 - 74	С	2.0			
65 - 69	D+	1.5			
60 - 64	D	1.0			
Below 60	F	0			

Notes for more grading policy :

- a) For those students who receive the total score below 60% will get a grade "F" and above 90% will be an "A". The other grades depend on an average of the class like the tentative scale above.
- b) Both exams are close book, no calculator. But you are allowed to use the "<u>formula sheet</u>" (size A4 one side) attached with the exam paper during the test.
- c) Please come on time to the lecture. I will randomly check your attendance. You are able to absent the lectures three times. Your grade will be deducted 1% for each lecture you missing the class (if you have more than three times). There are no make-up with the lab/quiz in classes for the students who miss them.

14. Course Evaluation

- 14.1 Evaluate as indicated in number 13 above.
- 14.2 Evaluate student's satisfaction towards teaching and learning of the course using a questionnaire.

15. References

Neil Weste, David Harris, "CMOS VLSI Design: A Circuits and Systems Perspective", 4th Edition, Addison Wesley, 2011, ISBN 978-0-321-54774-3

16. Instructors

Asst. Prof. Decha Wilairat Department of Electrical Engineering, Faculty of Engineering, Mahidol University Phone : 02-889-2138 ext 6501-2 E-mail : <u>decha.wil@mahidol.ac.th</u>, dewilairat@gmail.com

17. Course Coordinator

Asst. Prof. Dr. Rangsipan Marukatat Department of Computer Engineering, Faculty of Engineering, Mahidol University Phone : 02-889-2138 ext 6251, 6253 E-mail : egrmr@mahidol.ac.th