Course Syllabus

1.	Program of Study Faculty/Institute/College	Bachelor of Science (Computer Science) Mahidol University International College Mahidol University			
	Course Code ICCS 452	Course Title Intelligent robotics			
2.	Number of Credits	4 (Lectures/lab) (3 - 2)			
3.	Prerequisite(s)	ICCS 316, ICCS 321			
4.	Type of Course	Elective			

5. Trimester / Academic Year Trimester III / Year 2005 - 2006

6. **Course Description**

Artificial intelligence; intelligent behavior in the physical world; sensing the real world, acting intelligently; building robots to demonstrate the theories

7. Course Objective(s)

By the end of the course students should be able to:

- Describe and explain how robots sense, interpret, plan, and operate in the real world
- Identify issues related to real-time software development
- Gain knowledge in designing and programming various mechanisms of robots, such as motion and vision
- build simple automated robots

8. Course Outline

Week	Торіс				Instructor
week	Lecture	Hour	Lab	Hour	Instructor
1	Robotic Paradigm	3	Session #1: Design,		
2	Navigation	3	build and program		
3	Biological Foundations	3	simple autonomous 8		
	of the Reactive Paradigm		robots.		
4	The Reactive Paradigm	3	(week 1-4)		
5	Designing a Reactive	3	Session #2: Implement		
	Implementation		standard signal		Mr.
6	Common Sensing	3	processing and control	4	Pornchai
	Techniques for Reactive		algorithms.		Olarikded
	Robots		(week 5-6)		
7	The Hybrid Deliberative	3	Session #3: Describe		
	/ Reactive Paradigm		and analyze robot		
8	Multi-agents	3	processes using	4	
			appropriate methods.		
			(week 7-8)		

Weels	Торіс				Tradium of one	
vveek	Lecture Hou		Lab	Hour	Instructor	
8	Multi-agents	3				
9	Topological Path Planning	3	Session #4: Carry out and write up			
10	Metric Path Planning	3	investigations using appropriate experimental methods (week 9-10)	4	Mr. Pornchai Olarikded	
11	Localization and Map Planning	3	Show appreciation of the research literature in one subfield of intelligent robotics.	2		
	Total	33		22		

9. Teaching Method(s)

Lectures, hand-on practices, discussion, group work, and self-study

10. Teaching Media

Text and teaching materials, Powerpoint, handouts, and robot kits

11. Measurement and Evaluation of Student Achievement

Assessment made from stated criteria: students with 85% obtain grade A

12. Course Evaluation

1.	Participation	5%	4.	Mid-term exam	20%
2.	Project	20%	5.	Final exam	30%
3.	Assignments (×5)	25%			

13. Reference(s)

Mruphy, R. R., 2000. An Introduction to AI Robotics. MIT Press, Cambridge, MA.

Arkin, R. C., 1998. Behavior-based Robotics. MIT Press, Cambridge, MA.

Bekey, G. A., 2005. Autonomous Robots : From Biological Inspiration to Implementation and Control, MIT Press, Cambridge, MA.

14. Instructor(s)

Mr. Pornchai Olarikded

15. Course Coordinator

Mr. Pornchai Olarikded