
Module	Title	 Systematic	Software	Development		
Level	 5	
Reference	No.	 BIF-5-SSD	
Credit	Value	
	

20	

Student	Study	Hours	 Total:	200	
Contact	hours:	65	
Student	managed	learning	hours:	135	

Pre-requisite	Learning	 None	
Co-requisites	 None	
Excluded	combinations	 None	
Module	co-ordinator	 P	Rosner	
Faculty/Department	 Informatics	
Short	Description	 This	module	will	deepen	your	understanding	of	software	development	

processes	and	their	associated	products.	You	will	learn	how	to	develop	
software	systematically	from	initial	requirements	through	to	acceptance	
testing,	and	how	to	achieve	high	quality	in	terms	of	reliability,	robustness	
and	maintainability.	You	will	enhance	your	programming	skills	and	
develop	new	skills	in	the	areas	of	program	design	utilising	patterns,	user	
interface	design	and	implementation,	and	rigorous	testing.	

Aims	
	
	
	

The	module	aims	to	extend	your	understanding	of	the	issues	involved	in	
software	development.	It	covers	a	range	of	good	practices,	many	of	which	
are	reinforced	by	the	practical	work	that	you	undertake.	The	emphasis	is	
on	developing	high	quality	software	through	the	embodiment	of	key	
principles	such	as	the	separation	of	concerns	and	the	“keep	it	simple”	
maxim.	You	will	also	develop	new	skills	in	the	area	of	GUI	design	and	
implementation	as	well	as	in	systematic	development	and	testing.	

Learning	Outcomes	 Knowledge	and	understanding.	After	completing	this	module	you	should	
be	able	to:	

• Demonstrate	an	understanding	of	software	development	using	a	
variety	of	software	engineering	techniques.	

• Critically	evaluate	the	quality	of	a	software	artefact.	
Intellectual	skills.	You	should	be	able	to:	

• Use	sources	of	information	to	improve	your	knowledge	and	
understanding.	

Practical	skills.	You	should	be	able	to:	
• Demonstrate	an	understanding	of	using	IDE’s	to	build	and	test	

software	systems.	
Transferable	skills.	You	should	be	able	to:	

• Effectively	plan	the	development	of	a	practical	project	from	
design	to	implementation		

Employability	 Sound	knowledge	of	the	wide	range	of	issues,	principles	and	good	
practices	that	come	under	the	umbrella	of	“software	engineering”	is	to	be	
expected	of	all	professional	software	developers.	The	emphasis	on	visual	
application	development	within	this	module	will	also	extend	the	students’	
knowledge	and	expertise	in	this	key	area	of	software	development,	giving	
them	hands-on	experience.	

Teaching	and	learning	
pattern	

There	will	be	two	hours	of	lectures	each	week,	typically	introducing	new	
concepts	in	the	first	hour	and	then	explaining	how	to	implement	these	
concepts	with	software	examples	in	the	second	hour.	There	will	also	be	
one	three-hour	lab	session	each	week	in	which	students	will	work	on	the	
development	of	software	artefacts	and	carry	out	some	paper-based	
exercises.	

Indicative	content	 The	content	of	the	module	will	include:			
- software	development	lifecycle	models,	
- requirements	engineering	and	prototyping,	



- expressing	specifications	graphically	and	textually		
- aspects	of	software	quality	and	quality	assurance	techniques,	
- principles	of	testing,	
- software	maintenance	and	evolution.	
	

A	central	aspect	of	the	approach	to	the	above	topics	will	be	how	to	
construct	software	that	embodies	the	engineering	principles	addressed.	

Assessment	
Elements	&	weightings	

The	module	will	be	assessed	via	a	combination	of	coursework	(60%)	and	
exam	(40%).	The	coursework	will	typically	be	divided	into	a	series	of	
assessments	that	will	include	initial	specification	of	an	interactive	system	
and	a	subsequent	engineered	implementation	of	the	system.	

Indicative	Sources	
(Reading	lists)	
	

No	single	textbook	has	been	found	that	is	suitable	as	the	core	text	for	this	
module,	however	the	syllabus	can	be	covered	by	a	combination	of	
textbooks	such	as:	

	
Bell,	D.	(2005)	Software	Engineering:	A	Programming	Approach.	4th	ed.	
Addison-Wesley.	
Liang,	D	(2012)	Introduction	to	Java	Programming.	9th	ed.	Pearson	
Further	background	reading	includes	
Koskala,	L.	(2013)		Effective	Unit	Testing,	A	Guide	for	Java	Developers,	
Manning	
Freeman,	E.	Robson,	E.	Bates,	B.	Sierra,	K.(2004)	Head	First	Design	
Patterns,	O’Reilly	Media	
Hunt,	A,	Thomas,	D.	(2002)	The	Pragmatic	Programmer,	Adison	Wesley		
Leff,	A.	Rayfield,	J.	(2001),	Web	Application	Development	using	the	Model	
View	Controller	Design	Pattern,	IEEE	Enterprise	Distributed	Object	
Computing	Conference	pp	116-127	
Fowler,	M	(2006)	GUI	Architectures,	
http://martinfowler.com/eaaDev/uiArchs.html	
	
In	addition	to	textbooks,	students	will	be	expected	to	refer	to	other	web-
based	information	sources	as	required.	
	

 


