

SCHOOL OF PHARMACY AND HEALTH SCIENCES

SEMESTER:	Fall 2015
COURSE:	CHE 1306: Structure and Chemical Bonding
LECTURER :	Dr Naumih Noah
CLASS DAYS/TIME:	F 1.30 – 4.50 PM
CLASS VENUE:	SC 7
CREDIT UNIT:	3
OFFICE HOURS :	T 12.30 – 1.20 PM
CONTACT :	mnoah@usiu.ac.ke

COURSE DESCRIPTION:

The objective of this course is to study the atomic structure and chemical bonding in details and study their application in pharmaceutical sciences. It includes the study and application of transition metal and coordination chemistry.

Link to University Mission and Program Learning Outcomes:

1. Higher Order Thinking

- Collect, analyze and evaluate environmental data/information to formulate valid conclusions.
- Demonstrate the ability to reason critically and creatively in an interdisciplinary context.

2. Literacy

- Apply basic scientific, quantitative and technological skills in a changing environment.
- 3. Preparedness for Career
 - Apply intellectual knowledge to practical tasks.

Course Learning Outcomes:

Upon completion of this course, students should be able to:

- 1. State the properties and application of elements in the IUPAC periodic table and their compounds
- 2. Discuss ionic and covalent bonds of several elements in the IUPAC periodic table
- 3. Explain the molecular orbital theory and its application to pharmaceutical sciences
- 4. Discuss the properties of transition elements and their application to pharmaceutical sciences
- 5. Discuss complex ions and coordination compounds and their application to pharmaceutical sciences.

WEEK	TOPIC	Activity	Learning outcomes	READING
Week 1	Revision of Exam and Recap of the basic inorganic chemistry	Lecture and Class Discussi on		
Week 2	 Ionic and Covalent bonds 	Lecture, Discussi on	1,2	Course text page 329-359
Week 3	 Molecular Geometry and Bonding Theories Valence Bond Theory (VBT) Molecular Geometry and Hybrid Orbitals Hybridization Involving d Orbitals Multiple, Bonds and Orbital Overlaps, Resonance Structures and Hybrid Orbitals Molecular Orbital Theory Principles of molecular Orbital 	Lectures , Class Discussi on	3	Course text page 400-408

COURSE CONTENT

	• Electron Configurations of Diatomic			
	Molecules of the Second-Period			
	Elements			
	• Molecular Orbitals and Delocalized			
	Bonding			
Week	Chemistry of the Main Block	Lectures	1	Course
4	elements	, Class		text page
	 The Alkali and alkaline earth 	Discussi		867 - 883
	metals	on		
Week	Chemistry of the Main Block	Lecturer	1	Course
5	elements	s, Class		text page
	• Chemistry of the group 13	Discussi		892 -895
	and 14 elements	on and		
		Practical		
		3		
		Quiz 1		
Week	Chemistry of the Main Block	Lectures	1	Course
6	elements	, Class		text page
	 Chemistry of the group 15 	Discussi		900-908
	and 16 elements	on		
Week	Mid Semester Exam			
7				
Week	 Chemistry of the Main Block 	Lectures	1	Course
8	elements	, Class		text page
	• The group 17 and 18 elements	Discussi		914 -918
		on		
		_		
Week	Transition elements	Lectures	4	Course
9	Periodic Trends in the	, Class		text page
	Transition Elements	Discussi		931-934
	• The Chemistry of Two	on		
	I ransition Elements			
Masle		Last	4	Course
10	Iransition elements Derie die Trees de in the Trees di	Class	4	Course
10	Ferroaic Trends in the Transition	, Class		text page
	Elements	DISCUSSI		934-935
	• The Chemistry of Two Transition	on		
	Elements			
Magle	• Coordination Character	Locker	E	Course
vveek	Coordination Chemistry	Lectures	5	Course
11	Formation and Structure of	, Class		text page
	Complexes	Discussi		938 -942

	 Naming Coordination Compounds Structure and Isomerism in Coordination Compounds 	on, and Quiz 2		
Week 12	 Coordination Chemistry Valence Bond Theory of Complexes Crystal Field Theory 	Lectures , Class Discussi on	5	Course text page 942 -948
Week 13	Revision of assignments and group discussions	Lectures , Class Discussi on and Practical Exam	1,2,3,4,5	
Week 14	Final Semester Exam			

TEACHING METHODOLOGY:

- 1. Lectures, using power point presentations and class discussions.
- 2. Lectures will be given in class to explain to students various topics in basic inorganic chemistry.
- 3. Lectures will take a participatory approach where the instructor will involve students by frequently asking them questions that are meant to keep them alert and trigger class discussions.
- 4. Video demonstrations and/or CD-Roms on Inorganic Chemistry when available, after the relevant topic has been covered.
- 5. **Assignment criteria:** Students will be given several individual or group research assignments on topics relevant to the course. These could include lectures, discovery learning, problem-based learning, experimental learning, group-based learning, independent studies and e-learning.
- 6. The instructor will also be free to answer questions from students in the course of the lectures.

COURSE EVALUATION

Class attendance	10%
Individual assignments	15%
Group Assignment	10%
Quizzes	10%
Mid-Semester Exam	25%
Final Exam	30%
Total	100%

Note: seven absences from class will result to an automatic **grade F.** Assignments must be handed in on the due dates shown.

REFERENCE BOOKS

Course Text

General Chemistry by Darell Ebbing and Steven Gammon, 9th or 10th Edition. (ebook)

Other Reference Texts

- 1. Guha, S. (2013). J.D. Lee Concise Inorganic Chemistry for JEE (Main & Advanced). 2nd Edition. Wiley India Pvt Ltd., Daryaganj, New Delhi, DL
- 2. Housecroft, C. E., Sharpe, A. G. (2012). Inorganic Chemistry. 4th Edition. Prentice Hall, Upper Saddle River, New Jersey, USA
- 3. Vogel, A. I., Svehla, G. (2012). Vogel's Qualitative Inorganic Analysis. 7th Edition. Prentice Hall, Upper Saddle River, New Jersey, US

GRADING

- A 90-100
- A- 87-89
- B+ 84-86
- B 80-83
- B- 77-79
- C+ 74-76
- C 70-73
- C- 67-69
- D+ 64-66
- D 62-63
- D 02-03 D- 60-61
- F 0-59