

TQF 3 Course Specifications Section 1 General Information

1. Course code and course title

Thai ICCH 225 ชีวเคมี

English ICCH 225 Biochemistry

- 2. Number of credits 4 (4-0-8) (Lecture/Lab/Self-study)
- 3. Program and type of subject
 - 3.1 Program <u>Bachelor of Science (Chemistry)</u>
 - 3.2 Type of Subject Required Major course
- 4. Course Coordinator and Course Lecturer
 - 4.1 Course Coordinator Manchuta Dangkulwanich, PhD
 - 4.2 Course Lecturers Manchuta Dangkulwanich, manchuta.dan@mahidol.edu
- 5. Trimester/ Year of Study
- 5.1 Trimester <u>All trimesters (excluding summer session) / for all students in all International College Undergraduate Programs</u>
 - 5.2 Course Capacity Approximately 40 students
- 6. Pre-requisite ICBI 101 Biology I, ICCH 221 Organic Chemistry I
- 7. Co-requisites ICCH 225 Biochemistry Laboratory 8. Venue of Study Mahidol University, Salaya Campus

Section 2 Goals and Objectives

1. Course Goals

To provide an overview of biochemical principles, the structures and functions of biomolecules: amino acids, peptides, proteins, nucleic acids, carbohydrates, and lipids, as well as metabolic pathways common to prokaryotes, plants, and animals, equipping the students with the ability to analyze data from various biochemical experiments, an understanding of chemical reactions that sustain life at the molecular level, and the importance of biochemistry in the 21st century.

2. Objectives of Course Development/Revision

2.1 Course Objectives

Understanding of the principles of biochemistry and metabolic pathways is essential for the student's future endeavors in all areas of the life sciences, including applied sciences such as environmental, medical, and food sciences. This course aims to offer the basic principles of biochemistry, the structures and functions of biomolecules, their metabolisms, as well as their applications and impacts in the real world.

2.2 Course-level Learning Outcomes: CLOs

By the end of the course, students will be able to (CLOs)

- 1. CLO 1 Describe the structure and function of biomolecules
- 2. CLO 2 Explain the metabolic processes and their integration
- 3. CLO 3 Apply biochemical concepts to solve problems in biochemistry
- 4. CLO 4 Apply mathematic skills to biological problems
- 5. CLO 5 Use effective means of communication to collaborate with peers

Section 3 Course Management

1. Course Description

โครงสร้างและหน้าที่ของชีวโมเลกุลทั้งโปรตีน คาร์โบไฮเดรต ไขมัน และกรดนิวคลีอิก การเร่งปฏิกิริยาชีวภาพ พลังงานในสิ่งมีชีวิต วิถีเมแทบอลิซึมและการควบคุมในระดับเซลล์และโมเลกุล

Structure and function of biomolecules, especially proteins, carbohydrates, lipids, and nucleic acids, biological catalysis, bioenergetics, metabolic pathways and regulations at the cellular and molecular level

2. Credit hours per trimester

Lecture	Laboratory/field	Self-study
(Hour(s))	trip/internship	(Hour(s))
	(Hour(s))	
48	0	96

3. Number of hours that the lecturer provides individual counseling and guidance.

1 hour/week

Undergraduate Program Mahidol University International College Science Division

Section 4 Development of Students' Learning Outcome

- 1. Short summary on the knowledge or skills that the course intends to develop in students (CLOs)
 - By the end of the course, students will be able to:
 - 1. CLO 1 Describe the structure and function of biomolecules
 - 2. CLO 2 Explain the metabolic processes and their integration
 - 3. CLO 3 Apply biochemical concepts to solve problems in biochemistry
 - 4. CLO 4 Apply mathematic skills to biological problems
 - 5. CLO 5 Use effective means of communication to collaborate with peers
- 2. Teaching methods for developing the knowledge or skills specified in item 1 and evaluation methods of the course learning outcomes

ICCH 371	Teaching methods	Evaluation Methods
CLO1	Reading assignment, interactive lecture, case	Class discussion, exam
	studies, quiz, group activities, group discussion,	
CLO2	Reading assignment, interactive lecture, case	Class discussion, exam
	studies, quiz, group activities, group discussion	
CLO3	Reading assignment, group activities, case studies,	Class discussion, exam
	group discussion	
CLO4	Reading assignment, demonstration, group	Class discussion, exam
	activities, group discussion, case studies	
CLO5	Demonstration, group discussion	Observation, Peer evaluation

Section 5 Teaching and Evaluation Plans

1. Teaching plan

Class	Topic/Details	Numb Ho		Onlin e	On camp	Teaching Activities/	Lecturer
		Lecture	Lab		us	Media	
		Hours	Hours				
1	Tue 10:00 – 11:50	2	0		X		
	The foundations of Biochemistry						
2	Thu 10:00 – 11:50	2	0		X		
	Water's roles in biochemistry						
3	Tue 10:00 – 11:50	2	0		X		
	Amino acids and peptides						
4	Thu 10:00 – 11:50	2	0		X		
-	Exploring proteins	2	0		X		
5	Tue 10:00 – 11:50	2	U		X		
6	Protein function Thu 10:00 – 11:50	2	0		X		
0	Enzyme kinetics	2	0		Λ		
7	Tue 10:00 – 11:50	2	0		X		
,	Carbohydrates	2			Λ		
8	Thu 10:00 – 11:50	2	0		X		
	Nucleic acids and DNA-based	_					
	technologies						
9	Tue 10:00 – 11:50	2	0		X	Reading	
	Lipids, Membrane and Transport					assignment,	
10	Thu 10:00 – 11:50	2	0		X	interactive	
	Lipids, Membrane and Transport					lecture, quiz, group,	Manchuta
11	Tue 10:00 – 11:50	2	0		X	activities,	Dangkulw
	Signal Transduction	_				case	anich
12	Thu 10:00 – 11:50	2	0		X	studies,	union
	Basic concepts and Design of					group	
13	metabolism Tue 10:00 – 11:50	2	0		X	discussion,	
13	Glycolysis and Gluconeogenesis	2	U		Λ	demonstrati	
14	Thu 10:00 – 11:50	2	0		X	on	
17	The citric cycle	2	U		Λ		
15	Tue 10:00 – 11:50	2	0		X		
	The electron transport chain	_					
16	Thu 10:00 – 11:50	2	0		X		
	Oxidative phosphorylation						
17	Tue 10:00 – 11:50	2	0		X		
	The light reaction of photosynthesis						
18	Thu 10:00 – 11:50	2	0		X		
	The Calvin cycle						
19	Tue 10:00 – 11:50	2	0		X		
	Glycogen metabolism and the						
20	pentose phosphate pathway	_	0		37		
20	Thu 10:00 – 11:50 Glycogen metabolism and the	2	0		X		
	pentose phosphate pathway						
21	Tue 10:00 – 11:50	2	0		X		
21	Fatty acid and Lipid metabolism	2			71		

Undergraduate Program Mahidol University International College Science Division

22	Thu 10:00 – 11:50	2	0	X	
	Fatty acid and Lipid metabolism				
23	Tue 10:00 – 11:50	2	0	X	
	Metabolism of Nitrogen-containing				
	molecules				
24	Thu 10:00 – 11:50	2	0	X	
	Metabolism of Nitrogen-containing				
	molecules				
	Total	48	0		

Required Major Course Course Title: Biochemistry Course Code ICCH 225

- 2. Plan for Assessing Course Learning Outcomes
 - 2.1 Assessing and Evaluating Learning Achievement
 - a. Formative Assessment
 - Worksheet
 - Class discussion
 - Group discussion
 - Case study
 - Quizzes and Online homework 25%

b. Summative Assessment

Midterm Exam I 25%
Midterm Exam II 25%
Final Exam 25%

(1) Tools and Percentage Weight in Assessment and Evaluation

Learning Outcomes	Assessment Methods	Assessment Ratio		
CLO1 Describe the structure and	Midterm I	20		
function of biomolecules	Assignments	5	25	
CLO2 Explain the metabolic processes	Midterm II	20	25	
and their integration	Assignments	Assignments 5		
Grand Line in the second	Midterm II	II 5		
CLO3 Apply biochemical concepts to solve problems in biochemistry	Final	25	35	
solve problems in blochemistry	Assignments	5		
CLO4 Apply mathematic skills to	Midterm I	5	10	
biological problems	Assignments	5	10	
CLO 5 Use effective means of communication to collaborate with peers	Peer evaluation	5	5	
			100	

Required Major Course Course Title: Biochemistry Course Code ICCH 225

(2) Grading System

Grade	Achievement	Final Score (% Range)	GPA
A	Excellent	90-100	4.0
<u>B</u> +	Very good	85-89	3.5
В	Good	80-84	3.0
C+	Fairly good	75-79	2.5
С	Fair	70-74	2.0
D+	Poor	65-69	1.5
D	Very Poor	60-64	1.0
F	Fail	Less than 60	0.0

(3) Re-examination (If course lecturer allows to have re-examination)

N/A - (Not applicable with MUIC)

3. Student Appeals

According to OAA standard protocols.

Section 6 Teaching Materials and Resources

- 1. Textbooks and/or other documents/materials
- (1) Tymoczko, J.L., Berg, J.M., and Styer L. **Biochemistry: a short course**, 3rd edition, USA: W.H. Freeman and Co.; 2015.
- 2. Recommended textbooks and/or other documents/materials
- (1) Nelson, D.L. and Cox, M. M. **Lehninger Principles of Biochemistry** 7th Edition, USA: W.H. Freeman and Co.; 2017.
- (2) Ferrier, D.R. **Lippincott Illustrated Reviews: Biochemistry** 7th Edition, USA: Wolters Kluwer; 2017.
- (3) Selected readings from pertinent scientific journals and textbooks or video clips, as posted on the course's e-learning site
- 3. Other Resources (If any)

N/A

Section 7 Evaluation and Improvement of Course Management

- 1. Strategies for evaluating course effectiveness by students
 - 1.1 Student feedback of instructors, teaching methods and materials, and course content through MUIC student evaluation forms
- 2. Strategies for evaluating teaching methods
 - 2.1 Evaluation of effectiveness based on student evaluation scores and comments
 - 2.2 Evaluation through peer observations by co-instructor or other Division faculty
- 3. Improvement of teaching methods

Undergraduate Program Mahidol University International College Science Division

- 3.1 Adjustments based on student feedback, personal observations, comments from peer observations and discussions with supervisor and/or other Division faculty in one-on-one and/or group meetings as specified by MUIC guidelines
- 4. Verification process for evaluating students' standard achievement outcomes in the course
 - 4.1 Verification through student performance on assessments based on MUIC/Division standards
- 5. Review and plan for improving the effectiveness of the course
 - 5.1 Course instructors (and coordinator/supervisor) will meet to discuss results of student evaluations and student performance based on learning outcomes in order to identify point for improvement
 - 5.2 Strategy for improvement set according to MUIC/Division guidelines

Appendix Alignment between Courses and General Education courses

<u>Table 1</u> The relationship between course and Program Learning Outcomes (PLOs)

Biochemistry I	Program Learning Outcomes (PLOs)						
	PLO1 PLO2 PLO3 PLO4 PLO5 PLO6						
(ICCH371)	R	R		R		R	

<u>Note:</u> Indicate the level of CLOs by letter I, R, P or M. Using the information as shown in the Curriculum Mapping of TQF2.

<u>Table 2</u> The relationship between CLOs and Program LOs (Number in table = Sub LOs)

ICCH371	Learning Outcomes in the Chemistry Program (CH-PLOs)					
	1	2	3	4	5	6
CLO1 Describe the structure and function of biomolecules	1.5					
CLO2 Explain the metabolic processes and their integration	1.5	2.1 2.2 2.3				
CLO3 Apply biochemical concepts to solve problems in biochemistry	1.5 1.6 1.7					6.1
CLO4 Apply mathematic skills to biological problems	1.5 1.6					6.3
CLO 5 Use effective means of communication to collaborate with peers			3.1	4.1 4.2		

<u>Table 3</u> The description of Program LOs and Sub LOs of the course

LOs	Sub LOs
Apply appropriate chemistry	1.1 Identify and apply concepts related to physical chemistry to
knowledge and technical	solve problems
skills to solve problems	1.2 Identify and apply concepts related to organic chemistry to solve
	problems
	1.3 Identify and apply concepts related to analytical chemistry to
	solve problems
	1.4 Identify and apply concepts related to inorganic chemistry to
	solve problems
	1.5 Identify and apply concepts related to biochemistry to solve
	problems
	1.6 Use appropriate technical skills to solve problems

Undergraduate Program Mahidol University International College Science Division

ourse Code ICCH 223	Science Divisio
LOs	Sub LOs
	1.7 Synthesize information to arrive at logical reasoning in the context of chemistry
2. Appraise scientific	2.1 Retrieve information independently
information critically	2.2 Draw meaningful conclusion from the learning materials
	2.3 Assess the relevance of the information
	2.4 Manage scientific literatures using reference management
	software
3. Demonstrate proficiency in	3.1 Communicate/present ideas effectively both oral & written
oral and written	forms, proper to audience groups
communication of scientific	3.2 Prepare a purposeful oral presentation
concepts	3.3 Prepare written documents to communicate information/ideas
4. Apply scientific integrity and	4.1 Demonstrate moral and appropriate behavior
professionalism	4.2 Recognize ethical issues related to chemistry
	4.3 Identify national & global current issues and their relations to
	chemistry
	4.4 Apply accepted ethical standards to resolve issues
	4.5 Collaborate effectively with others as a responsible team member
5. Apply standard chemical	5.1 Use proper PPE
safety and practice in	5.2 Identify potential hazards associated to chemicals
research and industry	5.3 Assess risks associated, plan for prevention and mitigation
6. Formulate solutions for novel	6.1 Connect, synthesize and/or transform ideas or solutions within a
situations	particular framework
	6.2 Integrate alternative, divergent, or contradictory perspectives or
	ideas in the solution of a problem or question
	6.3 Create an original explanation or solutions to the
	situations/problems
	6.4 Articulate the rationale for and consequences of his/her solution