Required course Introduction to Data Science ICCS161

Undergraduate Program Mahidol University International College Science Division

TQF 3 Course Specifications Section 1 General Information

1. Course code and course title

Thai	ICCS໑๖໑	ศาสตร์ข้อมูลเบื้องต้น
English		Introduction to Data Science

- 2. Number of credits 4 (3-2-7) (Lecture/Lab/Self-study)
- 3. Program and type of subject
 - 3.1 Program Bachelor of Science (Computer Science)
 - 3.2 Type of Subject <u>Required course</u>
- 4. Course Coordinator and Course Lecturer
 - 4.1 Course Coordinator Boonyanit Mathayomchan, Ph.D.
 - 4.2 Course Lecturers Assoc. Prof. Rangsipan Marukatat, Ph.D.
- 5. Trimester/ Year of Study
 - 5.1 Trimester Once every academic year
 - 5.2 Course Capacity Approximately 30 students
- 6. Pre-requisite(s) ICMA251 Statistics for Science I
- 7. Co-requisite(s)
- 8. Venue of Study Mahidol University, Salaya Campus

Section 2 Goals and Objectives

1. Course Goals

To provide students with the skills to process a wide variety of data and make data-driven decisions.

- 2. Objectives of Course Development/Revision
 - 2.1 Course Objectives

This course is designed to fulfill the requirements of TQF1 and the recommendations from the Association for Computing Machinery (ACM).

- 2.2 Course-level Learning Outcomes: CLOs
- By the end of the course, students will be able to (CLOs)
- CLO1 Explain the concepts and use of data science, including logistical and ethical issues in its process.
- CLO2 Use standard software to manipulate structured and unstructured data.
- CLO3 Write programs or integrate available APIs to collect data, perform exploratory data analysis, and produce presentable information.
- CLO4 Use suitable basic machine learning algorithms in data-driven applications.
- CLO5 Carry out a data science workflow to provide statistically sound conclusions based on available data.

Section 3 Course Management

1. Course Description

Overview of data science; Software stack for data scientists; Acquiring data from online sources; Data cleansing and simple manipulation; Exploratory data analysis and visualization; Statistical inference and modeling; Basic machine learning algorithms; Classification and its applications; Clustering and its applications; Brief introduction to natural language processing; Data science and ethical issues

ภาพรวมของวิทยาศาสตร์ข้อมูล การเรียงลำดับซอฟต์แวร์ข้อมูลสำหรับนักวิทยาศาสตร์

การสืบค้นข้อมูลจากแหล่งข้อมูลออนไลน์ การทำความสะอาดข้อมูลและการถ่ายโอนอย่างง่าย

การวิเคราะห์ข้อมูลเชิงสำรวจและการสร้างมโนภาพ การอ้างอิงและการสร้างรูปแบบทางสถิติ

้อัลกอริทึมการเรียนรู้ของจักรกลขั้นพื้นฐาน การจัดระดับชั้นและการประยุกต์ใช้การจัดระดับชั้น

การประมวลผลภาษาทางธรรมชาติขั้นต้นอย่างสั้น วิทยาศาสตร์ข้อมูลและประเด็นทางจริยธรรม

2. Credit hours per trimester

Lecture	Laboratory/field trip/internship	Self-study (Hour(s))
(Hour(s))	(Hour(s))	(Hour(s))
36	24	84

3. Number of hours that the lecturer provides individual counseling and guidance. 1 hour/week Required course Introduction to Data Science ICCS161

Section 4 Development of Students' Learning Outcome

1. Short summary on the knowledge or skills that the course intends to develop in students (CLOs)

By the end of the course, students will be able to:

- CLO1 Explain the concepts and use of data science, including logistical and ethical issues in its process.
- CLO2 Use standard software to manipulate structured and unstructured data.
- CLO3 Write programs or integrate available APIs to collect data, perform exploratory data analysis, and produce presentable information.
- CLO4 Use suitable basic machine learning algorithms in data-driven applications.
- CLO5 Carry out a data science workflow to provide statistically sound conclusions based on available data.
- 2. Teaching methods for developing the knowledge or skills specified in item 1 and evaluation methods of the course learning outcomes

ICCS161	Teaching methods	Evaluation Methods
CLO1	Interactive lecture, case studies	Examination
CLO2	Case studies, exercises, group activities	Homework
CLO3	Case studies, exercises, group activities	Homework
CLO4	Interactive lecture, case studies, group activities	Homework, Examination
CLO5	Interactive lecture, case studies, group activities	Homework, Examination

1. Teaching plan

Section 5 Teaching and Evaluation Plans

		Numbe	r of Hours	Online	On		
Week	Торіс	Lecture Hours	Lab/Field Trip/ Internship Hours		Campus	Teaching Activities/ Media	Lecturer
1	Overview of data science & data analysis tools	3	2	X		Interactive lecture, case studies,	Rangsipan
2	Data exploration, visualization, manipulation	3	2	X		exercises, group activities	
3	Data cleansing	3	2	Х			
4	Data modeling 1	3	2	X			
5	Data modeling 2	3	2	Х			
6	Midterm review		2	Х			
	Midterm exam	3			Х		
7	Data modeling 3	3	2	Х			
8	Clustering 1	3	2	Х			
9	Clustering 2	3	2	Х			
10	Text processing	3	2	Х			
11	Text processing	3	2	Х			
12	Emerging topics in data science	3		Х			
	Final review		2	X			
	Final exam	3			Х		
	Total	36	24				

- 2. Plan for Assessing Course Learning Outcomes
 - 2.1 Assessing and Evaluating Learning Achievement
 - a. Formative Assessment
 - Worksheet
 - Class discussion
 - b. Summative Assessment

(1) Tools and Percentage Weight in Assessment and Evaluation

Learning Outcomes	Assessment Methods		ent Ratio entage)
CLO1 Explain the concepts and use of data science, including logistical and ethical issues in its process.	Examination	20	20
CLO2 Use standard software to manipulate structured and unstructured data.	Homework	20	20
CLO3 Write programs or integrate available APIs to collect data, perform exploratory data analysis, and produce presentable information.	Homework	20	20
CLO4 Use suitable basic machine learning algorithms	Homework	5	20
in data-driven applications.	Examination	15	
CLO5 Carry out a data science workflow to provide	Homework	5	20
statistically sound conclusions based on available data.	Examination	15	
			100

(2) Grading System

Grade	Achievement	Final Score (% Range)	GPA
А	Excellent	90-100	4.0
B+	Very good	85-89	3.5
В	Good	80-84	3.0
C+	Fairly good	75-79	2.5
С	Fair	70-74	2.0
D+	Poor	65-69	1.5
D	Very Poor	60-64	1.0
F	Fail	Less than 60	0.0

(3) Re-examination (If course lecturer allows to have re-examination)

N/A - (Not applicable with MUIC)

3. Student Appeals

N/A

Section 6 Teaching Materials and Resources

1. Textbooks and/or other documents/materials

- V. Kotu and B. Deshpande. Data Science: Concepts and Practice, Morgan Kaufmann Publisher
- P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining, Pearson Addison Wesley

2. Recommended textbooks and/or other documents/materials

Selected readings from pertinent scientific journals and textbooks or video clips, as posted on the course's e-learning site

3. Other Resources (If any)

N/A

Section 7 Evaluation and Improvement of Course Management

- 1. Strategies for evaluating course effectiveness by students
 - 1.1 Student feedback of instructors, teaching methods and materials, and course content through MUIC student evaluation forms
- 2. Strategies for evaluating teaching methods
 - 2.1 Evaluation of effectiveness based on student evaluation scores and comments
 - 2.2 Evaluation through peer observations by co-instructor or other Division faculty
- 3. Improvement of teaching methods
 - 3.1 Adjustments based on student feedback, personal observations, comments from peer observations and discussions with supervisor and/or other Division faculty in one-on-one and/or group meetings as specified by MUIC guidelines
- 4. Verification process for evaluating students' standard achievement outcomes in the course
 - 4.1 Verification through student performance on assessments based on MUIC/Division standards
- 5. Review and plan for improving the effectiveness of the course
 - 5.1 Course instructors (and coordinator/supervisor) will meet to discuss results of student evaluations and student performance based on learning outcomes in order to identify point for improvement
 - 5.2 Strategy for improvement set according to MUIC/Division guidelines

Appendix Alignment between Courses and General Education courses

Table 1 The relationship between course and Program Learning Outcomes (PLOs)

	Program Learning Outcomes (PLOs)					
	PLO1 PLO2 PLO3 PLO4 PLO5					PLO6
(ICCS161)	Р	Ι	Р			

<u>Table 2</u> The relationship between CLOs and Program LOs (Number in table = Sub LOs)

ICCS161		Learning Outcomes in the Computer Science Program				
	1	2	3	4	5	6
CLO1 Explain the concepts and use of data science, including logistical and ethical issues in its process.	1.3	2.2				
CLO2 Use standard software to manipulate structured and unstructured data.			3.4			
CLO3 Write programs/integrate available APIs to collect data, perform exploratory data analysis, and produce presentable information.	1.3	2.2	3.4			
CLO4 Use suitable basic machine learning algorithms in data-driven applications.			3.4			
CLO5 Carry out a data science workflow to provide statistically sound conclusions based on available data.		2.2	3.4			

ICCS161	Science Divisio
Table 3 The description of Prog	gram LOs and Sub LOs of the course
CS LOs	Sub LOs
PLO1 Demonstrate proficiency in	1.1 Understand the format of communication in
scientific communication.	computer science.
	1.2 Communicate inchoate ideas to others for further
	development and refinement.
	1.3 Describe computing concepts to members of the
	community with accuracy and clarity.
PLO2 Carry out work with scientific	2.1 Recognize the concepts of intellectual property,
integrity and professionalism.	copyright licenses, and law pertaining to information
	technology.
	2.2 Provide ethical reasoning and awareness of issues
	surrounding bias, fabrication, falsification, plagiarism,
	outside interference, censorship, and information
	privacy.
	2.3 Demonstrate good time management, self-
	regulation, autonomy, and professional code of
	conduct of the discipline.
PLO3 Appraise scientific	3.1 Apply quantitative reasoning using mathematical
information critically.	methods and scientific facts, taking into consideration
	multiple perspectives.
	3.2 Provide a succinct description of the issue (i.e., a
	problem, a question, or a hypothesis), separating facts
	and assumptions.
	3.3 Differentiate source, validity, objectives, key
	arguments, and consequences of a piece information.
	3.4 Create a response to the issue by synthesizing
	collected information critical to the assessment.
PLO4 Use a teamwork mindset in	
the context of computing.	
PLO5 Execute common computing	5.1 Carry out the process of converting a
methodologies appropriate for a	process/algorithm to a machine-executable program.
problem scenario.	5.2 Use suitable techniques for correctness and cost
	analysis of computer programs.
	5.3 Deconstruct a computer system to reveal its
	structure, components, and process of construction.
	5.4 Select common computing techniques (e.g.,
	standard algorithms, data structures, design patterns,
	programing style, and computing paradigms)
	appropriate for a given problem scenario.
PLO6 Formulate computational	6.1 Model a given problem using suitable abstractions,
solutions to novel situations	including problem decomposition, in the context of
grounded on the foundation of	computing.
computer science.	6.2 Compare the relative strengths and weaknesses
	among multiple designs or implementations.

Required course Introduction to Data Science

ICCS161	- Joeraena	Science Divisio
CS LOs	Sub LOs	
	6.3 Assess the feasibility an computational solution base implementation.	
	6.4 Devise computational se using knowledge and exper	