

Undergraduate Program Mahidol University International College Science Division

TQF 3 Course Specifications

Section 1 General Information

1. Course code and course title

Thai ICCS :	323 ไอโอที อิเล็กทรอนิกส์			
English ICCS (323 IoT Electronics			
2. Number of credits 4 (4-0-	8)			
3. Program and type of subject	et			
3.1 Program	Undergraduate Degree (International Program)			
3.2 Type of Subject	Elective Major Course			
4. Course Coordinator and Course Lecturer				
4.1 Course Coord	linator Piti Ongmongkolkul			
4.2 Course Lectu	rer Piti Ongmongkolkul			
5. Trimester/ Year of Study				
5.1 Trimester All trin	nesters (including summer session) / for all students in all			
International College Underg	raduate Programs			
5.2 Course Capacity	Approximately 30 students			
6. Pre-requisites	ICPY 102 Physics II			
	ICCS 121 System Skills and Low-level Programming			
7. Co-requisites	<u>N/A</u>			
8. Venue of Study	Mahidol University, Salaya campus			

Section 2 Goals and Objectives

1. Course Goals

Students should be able to design, build and implement electronics circuits to serve their need.

2. Objectives of Course Development/Revision

- 2.1 Course Objectives
 - 1. To revise course contents
 - 2. To include a well-defined course-level learning Outcomes.

2.2 Course-level Learning Outcomes: CLOs

By the end of the course, students will be able to (CLOs)

- 1. CLO1: Program microcontroller.
- 2. CLO2: Design and build electronics devices.
- 3. CLO3: Explain how common electronics devices works.
- 4. CLO4: Connect electronic devices to stream data to computer and perform communication over wireless network.
- 5. CLO5: Understand basic analog circuit.

Undergraduate Program Mahidol University International College Science Division

Section 3 Course Management

1. Course Description

ไมโครคอนโทรลเลอร์ และ การเขียนโปรแกรม, การออกแบบวงจร, ชิ้นส่วนอิเล็กทรอนิกส์ต่าง ๆ, การ

เชื่อมต่อเครือข่าย, วงจรอนาล็อค

Microcontroller and Programming, Circuit Design and Analysis, Electrical Components, Networking, and Analog Circuit.

2. Credit hours per trimester

Lecture (Hour(s))	Laboratory/field trip/internship (Hour(s))	Self-study (Hour(s))
48	0	96

3. Number of hours that the lecturer provides individual counseling and guidance. 2 hour/week

Section 4 Development of Students' Learning Outcome

1. Short summary on the knowledge or skills that the course intends to develop in students (CLOs)

By the end of the course, students will be able to

- 1. CLO1: Program microcontroller.
- 2. CLO2: Design and build electronics devices.
- 3. CLO3: Explain how common electronics devices works.
- 4. CLO4: Connect electronic devices to stream data to computer and perform communication over wireless network.
- 5. CLO5: Understand basic analog circuit.
- 2. Teaching methods for developing the knowledge or skills specified in item 1 and evaluation methods of the course learning outcomes

Course CLO	Teaching methods	Evaluation Methods
CLO 1	Lecture, class discussion	Assignments, written examination
CLO 2	Lecture, class discussion	Assignments, written examination
CLO 3	Lecture, class discussion	Assignments, written examination
CLO 4	Lecture, class discussion	Assignments, written examination
CLO 5	Lecture, class discussion	Assignments, written examination

Undergraduate Program Mahidol University International College Science Division

Undergraduate Program Mahidol University International College Science Division

Section 5 Teaching and Evaluation Plans

1. Teaching plan

		Numbe	er of Hours		
Week		Lecture Hours	Lab/ Field Trip/ Internship Hours	Teaching Activities/ Media	Lecturer
1	Microcontroller Programming	4	0		
2	Switches and Pulse Width Modulation	4	0		
3	Reading Schematics and Soldering	4	0		
4	Integrated Circuit and Datasheet	4	0		
5	Motors	4	0	Lecture, hands on exercise.	Piti O.
6	Real-time System	4	0		
7	Wireless Communication	4	0		
8	Analog Circuits	4	0		
9	Individual Project	4	0		
10	Individual Project	4	0		
11	Individual Project	4	0		
12	Presentation	4	0		
	Total	48	0		

2. Plan for Assessing Course Learning Outcomes

- 2.1 Assessing and Evaluating Learning Achievement a. Formative Assessment
 - 1. Class discussion

- 2. Reflective question
- 3. In-class examples
- b. Summative Assessment

(1) Tools and Percentage Weight in Assessment and Evaluation

Learning Outcomes	Assessment Methods	Assessment Ratio (percentage)	
CLO1: Program microcontroller.	Exam	4	20
	Assignment/Project	16	
CLO2: Design and build electronics devices.	Exam	4	20
	Assignment/Project	16	
CLO3: Explain how common electronics devices	Exam	4	20
works.	Assignment/Project	16	
CLO4: Connect electronic devices to stream data	Exam	4	20
to computer and perform communication over wireless network.	Assignment/Project	16	
CLO5: Understand basic analog circuit.	Exam	4	20
	Assignment/Project	16	
Total			100

(2) Grading System

Grade	deAchievementFinal Score (% range)		GPA
Α	Excellent	90-100	4.0
B+	Very good	85-89	3.5
В	Good	80-84	3.0
C+	Fairly good	75-79	2.5

Undergraduate Program Mahidol University International College Science Division

C	Fair	70-74	2.0
D+	Poor	65-69	1.5
D	Very poor	60-64	1.0
F	Fail	Less than 60	0.0

(3) Re-examination (If course lecturer allows to have re-examination) <u>N/A - (Not applicable with MUIC)</u>

3. Student Appeals

N/A

Section 6 Teaching Materials and Resources

- 1. Textbooks and/or other documents/materials
 - 1. Brian W. Evans, Arduino Programming Notebook.
 - 2. Horowitz and Hill, Arts of Electronics.
- 2. Recommended textbooks and/or other documents/materials As posted on the course's e-learning site
- Other Resources (If any) As posted on the course's e-learning site

Section 7 Evaluation and Improvement of Course Management

- 1. Strategies for effective course evaluation by students
 - 1.1. Discussion between course instructor and students
 - 1.2. Questionnaire from students.
- 2. Evaluation strategies in teaching methods

2.1. Evaluation of effectiveness based on student evaluation scores and comments

2.2. Evaluation through peer observations by co-instructor or other Division faculty

3. Improvement of teaching methods

3.1. Adjustments based on student feedback, personal observations, comments from peer observations and discussions with supervisor and/or other Division faculty in one-on-one and/or group meetings as specified by MUIC guidelines.

4. Verification of students' learning outcomes.

4.1. Verification through student performance on assessments based on MUIC/Division standards

Undergraduate Program Mahidol University International College Science Division

5. Review and improvement for better outcome

5.1. Course instructors (and coordinator/supervisor) will meet to discuss results of student evaluations and student performance based on learning outcomes in order to identify point for improvement

5.2 Strategy for improvement set according to MUIC/Division guidelines

Appendix Alignment between Course learning outcomes and Program learning outcome

Table 1 The relationship between course and Program Learning Outcomes (PLOs)

	Program Learning Outcomes (PLOs)					
	PLO1 PLO2 PLO3 PLO4 PLO5 PLO6				PLO6	
(ICCS323)					R	R

Table 2 The relationship between CLOs and Program LOs (Number in table = sub-LOs)

ICCS323		Learning Outcomes in the Computer Science Program				
	1	2	3	4	5	6
CLO1: Program microcontroller.					5.1	
CLO2: Design and build electronics devices.					5.4	6.1
CLO3: Explain how common electronics devices works.					5.3	
CLO4: Connect electronic devices to stream data to computer and perform communication over wireless network.					5.1 5.4	6.1
CLO5: Understand basic analog circuit.					5.3	

Table 3. Description of Program LOs and Sub-LOs of the program

CS LOs	Sub LOs
PLO1 Demonstrate proficiency in	1.1 Understand the format of communication in
scientific communication.	computer science.
	1.2 Communicate inchoate ideas to others for further
	development and refinement.
	1.3 Describe computing concepts to members of the
	community with accuracy and clarity.
PLO2 Carry out work with scientific	2.1 Recognize the concepts of intellectual property,
integrity and professionalism.	copyright licenses, and law pertaining to information
	technology.

Undergraduate Program Mahidol University International College Science Division

	Sub LOa
CS LOs	Sub LOs
	2.2 Provide ethical reasoning and awareness of issues surrounding bias, fabrication, falsification, plagiarism, outside interference, censorship, and information privacy.
	2.3 Demonstrate good time management, self-regulation, autonomy, and professional code of conduct of the discipline.
PLO3 Appraise scientific information critically.	3.1 Apply quantitative reasoning using mathematical methods and scientific facts, taking into consideration multiple perspectives.
	3.2 Provide a succinct description of the issue (i.e., a problem, a question, or a hypothesis), separating facts and assumptions.
	3.3 Differentiate source, validity, objectives, key arguments, and consequences of a piece information.
	3.4 Create a response to the issue by synthesizing collected information critical to the assessment.
PLO4 Use a teamwork mindset in the context of computing.	
PLO5 Execute common computing	5.1 Carry out the process of converting a
methodologies appropriate for a	process/algorithm to a machine-executable program.
problem scenario.	5.2 Use suitable techniques for correctness and cost analysis of computer programs.
	5.3 Deconstruct a computer system to reveal its structure, components, and process of construction.
	5.4 Select common computing techniques (e.g., standard algorithms, data structures, design patterns, programing style, and computing paradigms) appropriate for a given problem scenario.
PLO6 Formulate computational solutions to novel situations	6.1 Model a given problem using suitable abstractions, including problem decomposition, in the
grounded on the foundation of	context of computing.
computer science.	6.2 Compare the relative strengths and weaknesses
F	among multiple designs or implementations.
	6.3 Assess the feasibility and efficacy of a
	computational solution based on its design and implementation.
	6.4 Devise computational solutions to novel situations
	using knowledge and experience in computer science.