

Undergraduate Program Mahidol University International College Science Division

TQF 3 Course Specifications Section 1 General Information

1. Course code and course title

Thai ICCS 418 ค English ICCS	วามมั่นคงในระบบคอมพิวเตอร์ 418 Computer System Security
Eligiisii ICCS	418 Computer System Security
2. Number of credits 4 (4-0-	-8) (Lecture/Lab/Self-study)
3. Program and type of subje	ct
3.1 Program	Bachelor of Science (Computer)
3.2 Type of Subject	Elective course
4. Course Coordinator and Co	ourse Lecturer
4.1 Course Coordinat	or Kanat TANGWONGSAN
4.2 Course Lecturers	Asst. Prof. Dr. Wilawan RUKPAKAVONG
5. Trimester/ Year of Study	
5.1 Trimester All tri	nesters (excluding summer session) / for all students in all
International College Underg	raduate Programs
5.2 Course Capacity	Approximately 40 students
6. Pre-requisite	-
7. Co-requisites	-
8. Venue of Study	Mahidol University, Salaya Campus

9. Date of Latest Revision Aug 28, 2020

Section 2 Goals and Objectives

- 1. Course Goals
 - To be able to identify security issues in various aspects of computing.
 - To be able to use this ability to design systems that are more protective of security.
- 2. Objectives of Course Development/Revision

2.1 Course Objectives

This course will teach the principles and practices of computer system security as applied to software and network layers. It covers the foundations and techniques of analyzing the security of systems and building secured systems.

2.2 Course-level Learning Outcomes: CLOs

- By the end of the course, students will be able to (CLOs)
- 1. CLO 1 Describe fundamental of computer security concepts.
- 2. CLO 2 Explain access control mechanisms including their strengths and weaknesses.
- 3. CLO 3 Classify cryptography algorithms and explain the difference between them.
- 4. CLO 4 Classify software/operating systems and computer network vulnerabilities with security attack techniques.
- 5. CLO 5 Understanding the defense and analysis techniques for business continuity.

Section 3 Course Management

2. Course Description

กระแสการรักษาความปลอดภัย, ความมั่นคงปลอดภัยข้อมูลและการบริหารความเสี่ยง, การควบคุมการเข้าถึง, การออกแบบและสถาปัตยกรรมความมั่นคงปลอดภัย, โทรคมนาคมและการรักษาความปลอดภัยระบบเครือข่าย, วิทยาการเข้าถึงรหัสลับ, ความต่อเนื่องทางธุรกิจและการกู้คืนข้อมูล, การรักษาปลอดภัยของแอปพลิเคชั่น, การ รักษาความปลอดภัยของระบบปฏิบัติการ, ฝึกปฏิบัติการไฟร์วอลล์, ดีเอ็มเอสและไอพี เอส

Security trends; information security and risk managements; access control, security architecture and design; physical and environmental security; telecommunications and network security; cryptography; business continuity and disaster recovery; legal/regulation compliance and investigations; application security; operation security; practical workshops of basic firewall appliance, DMZ and IPS.

2. Credit hours per trimester

Lecture (Hour(s))	Laboratory/field trip/internship (Hour(s))	Self-study (Hour(s))
48	0	96

3. Number of hours that the lecturer provides individual counseling and guidance. 1 hour/week

Undergraduate Program Mahidol University International College Science Division

Section 4 Development of Students' Learning Outcome

2. Short summary on the knowledge or skills that the course intends to develop in students (CLOs)

By the end of the course, students will be able to:

- 1. CLO 1 Describe fundamental of computer security concepts.
- 2. CLO 2 Explain access control mechanisms including their strengths and weaknesses.
- 3. CLO 3 Classify cryptography algorithms and explain the difference between them.
- 4. CLO 4 Classify software/operating systems and computer network vulnerabilities with security attack techniques.
- 5. CLO 5 Understanding the defense and analysis techniques for business continuity.
- 2. Teaching methods for developing the knowledge or skills specified in item 1 and evaluation methods of the course learning outcomes

ICCH 418	Teaching methods	Evaluation Methods	
CLO1	Reading assignment, interactive lecture, case	Quiz, Homework,	
	studies, quiz, group activities, group discussion	Examination	
CLO2	Reading assignment, interactive lecture, case	Quiz, Homework,	
	studies, quiz, group activities, group discussion	Examination	
CLO3	Reading assignment, interactive lecture, case	Quiz, Homework,	
	studies, quiz, group activities, group discussion	Examination	
CLO4	Reading assignment, interactive lecture, case	Quiz, Homework,	
	studies, quiz, group activities, group discussion	Examination	
CLO5	Reading assignment, interactive lecture, case	Quiz, Homework,	
	studies, quiz, group activities, group discussion	Examination	

Section 5 Teaching and Evaluation Plans

1. Teach	ing plan					
	Topic		r of Hours			
Week			Lab/Field Trip/Intern ship Hours	Teaching Activities/ Media	Lecturer	
1	Introduction to Computer Security	4	-	Reading		
2-3	Access Control	8	-	assignment,	Asst. Prof. Dr. Wilawan Rukpakavong	
4-5	Cryptography	8	-	interactive		
6	Software vulnerabilities	4	-	lecture,		
7	OS vulnerabilities and Malwares	4	-	quiz, group activities,		
8	Network Security	4	-	case studies,		
9	Internet Application Security and Privacy	4	-	discussion		
10	Database Security and Privacy	4	-			
11	Defense Techniques (Firewall, IDS)	4	-			
12	Digital Forensics	4	-			
	Total	48	-			

2. Plan for Assessing Course Learning Outcomes

- 2.1 Assessing and Evaluating Learning Achievement
 - a. Formative Assessment
 - Worksheet
 - Class discussion
 - Group discussion
 - b. Summative Assessment
 - c. Projects

(1) Tools and Percentage Weight in Assessment and Evaluation

Learning Outcomes	Assessment Assessm Methods (Perce		ent Ratio entage)	
CLO 1 Describe fundamental of computer	Homework & Quiz	10	15	
security concepts.	Examination	5		
CLO 2 Explain access control mechanisms	Homework & Quiz & Project	10		
including their strengths and weaknesses.	Examination	5	15	
CLO 3 Classify cryptography algorithms	Homework & Quiz & Project	10		
and explain the difference between them.	Examination	5	15	
CLO 4 Classify software/operating systems and computer network vulnerabilities with	Homework & Quiz & Project	20 35		
security attack techniques.	Examination	15		
CLO 5 Understanding the defense and	Homework & Quiz & Project	10	20	
anarysis teeninques for business continuity.	Examination	10		
			100	

(2) Grading System

Grade	Achievement	Final Score (% Range)	GPA
А	Excellent	90-100	4.0
, B+	Very good	85-89	3.5
В	Good	80-84	3.0
C+	Fairly good	75-79	2.5
С	Fair	70-74	2.0
D+	Poor	65-69	1.5
D	Very Poor	60-64	1.0
F	Fail	Less than 60	0.0

Undergraduate Program Mahidol University International College Science Division

(3) Re-examination (If course lecturer allows to have re-examination) N/A - (Not applicable with MUIC)

3. Student Appeals N/A

Section 6 Teaching Materials and Resources

1. Textbooks and/or other documents/materials

• Charles P. Pfleeger, Shari Lawrence Pfleeger, "Security in Computing", 5th Edition (Pearson), 2015. (ISBN: 9780134085043

- 2. Recommended textbooks and/or other documents/materials
 - James Graham, Ryan Olson, Rick Howard, "Cyber Security Essentials", CRC press, 2010.
 - Linda K. Lavender, "Principles of Cybersecurity", G-W Publisher, 2020.
 - Selected readings from pertinent scientific journals and textbooks or video clips, as posted on the course's e-learning site
- 3. Other Resources (If any)

N/A

Section 7 Evaluation and Improvement of Course Management

- 1. Strategies for evaluating course effectiveness by students
 - 1.1 Student feedback of instructors, teaching methods and materials, and course content through MUIC student evaluation forms
- 2. Strategies for evaluating teaching methods
 - 2.1 Evaluation of effectiveness based on student evaluation scores and comments
 - 2.2 Evaluation through peer observations by co-instructor or other Division faculty
- 3. Improvement of teaching methods
 - 3.1 Adjustments based on student feedback, personal observations, comments from peer observations and discussions with supervisor and/or other Division faculty in one-on-one and/or group meetings as specified by MUIC guidelines
- 4. Verification process for evaluating students' standard achievement outcomes in the course
 - 4.1 Verification through student performance on assessments based on MUIC/Division standards
- 5. Review and plan for improving the effectiveness of the course
 - 5.1 Course instructors (and coordinator/supervisor) will meet to discuss results of student evaluations and student performance based on learning outcomes in order to identify point for improvement
 - 5.2 Strategy for improvement set according to MUIC/Division guidelines

Appendix Alignment between Courses and General Education courses

Table 1 The relationship between course and Program Learning Outcomes (PLOs)

	Program Learning Outcomes (PLOs)					
	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
(ICCS418)		2.1, 2.2			5.2,5.3, 5.4	6.2

Note: Indicate the level of CLOs by letter I, R, P or M. Using the information as shown in the Curriculum Mapping of TQF2.

<u>Table 2</u> The relationship between CLOs and Program LOs (Number in table = Sub LOs)

	Lear	ning Out	comes in	the Con	nputer Sc	ience	
ICCS418		Program					
		-	(CS-I	PLOs)	-	-	
	1	2	3	4	5	6	
CLO 1 Describe fundamental of computer		2.1,					
security concepts.		2.2					
CLO 2 Explain access control		5.4,					
mechanisms including their strengths		6.2					
and weaknesses.							
CLO 3 Classify cryptography algorithms					5.4		
and explain the difference between them.							
CLO 4 Classify software/operating					5.2		
systems and computer network					5.3		
vulnerabilities with security attack							
techniques.							
CLO 5 Understanding the defense and		2.1,					
analysis techniques for business		2.2					
continuity.							

Table 3 The description of Program LOs and Sub LOs of the course

LOs		Sub LOs
1.	Demonstrate proficiency	1.1 Identify means and platforms of communication commonly
	in scientific	used in computing disciplines
	communication	1.2 Communicate inchoate ideas to others for further development
		and refinement
		1.3 Describe computing concepts to members of the community
		with accuracy and clarity.
2.	Carry out work with	2.1 Recognize the concepts of intellectual property, copyright
	scientific integrity and	licenses, and law pertaining to information technology
	professionalism	2.2 Provide ethical reasoning and awareness of issues surrounding
		bias, fabrication, falsification, plagiarism, outside interference,
		censorship, and information privacy.
		2.3 Demonstrate good time management, self-regulation,
		autonomy, and professional code of conduct of the discipline.
3.	Appraise scientific	3.1 Apply quantitative reasoning using mathematical methods and
	information critically	scientific facts, taking into consideration multiple
		perspectives.
		3.2 Provide a succinct description of the issue (i.e., a problem, a
		question, or a hypothesis), separating facts and assumptions
		3.3 Differentiate source, validity, objectives, key arguments, and
		consequences of a piece information.
		3.4 Create a response to the issue by synthesizing collected
		information critical to the assessment
4.	Use a teamwork mindset	
	in the context of	
	computing.	
5.	Execute common	5.1 Carry out the process of converting a process/algorithm to a
	computing methodologies	machine-executable program.
	appropriate for a problem	5.2 Use suitable techniques for correctness and cost analysis of
	scenario	computer programs
		5.3 Deconstruct a computer system to reveal its structure,
		components, and process of construction
		5.4 Select common computing techniques (e.g., standard
		algorithms, data structures, design patterns, programing style,
		and computing paradigms) appropriate for a given problem
		scenario.
6.	Formulate computational	6.1 Model a given problem using suitable abstractions, including
	solutions to novel	problem decomposition, in the context of computing
	situations grounded on the	6.2 Compare the relative strengths and weaknesses among
	foundation of computer	multiple designs or implementations
	science	6.3 Assess the feasibility and efficacy of a computational solution
		based on its design and implementation
		6.4 Devise computational solutions to novel situations using
		knowledge and experience in computer science