

TQF 3 Course Specifications Section 1 General Information

1. Course code and course title

> การเรียนรู้ของเครื่อง ICCS๔๖෧ Thai **Machine Learning** English ICCS461

- 2. Number of credits 4 (4-0-8) (Lecture/Lab/Self-study)
- 3. Program and type of subject

3.1 Program Bachelor of Science (Computer Science)

3.2 Type of Subject Elective

- 4. Course Coordinator and Course Lecturer
 - Course Coordinator Sunsern CHEAMANUNKUL, PhD 4.1

4.2 Course Lecturers **TBA**

- 5. Trimester/ Year of Study
 - 5.1 Trimester Once every academic year

5.2 Course Capacity Approximately 30 students

ICCS161 Introduction to Data Science; 6. Pre-requisite(s)

ICCS205 Numerical Computation

7. Co-requisite(s)

Mahidol University, Salaya Campus 8. Venue of Study

Section 2 Goals and Objectives

1. Course Goals

To provide students with a basic understanding of machine learning approaches and techniques, as well as their applicability to a wide range of real-world applications.

2. Objectives of Course Development/Revision

2.1 Course Objectives

This course complements students' broad-based knowledge with in-depth coverage of their areas of interest.

2.2 Course-level Learning Outcomes: CLOs

By the end of the course, students will be able to (CLOs)

- CLO1 Describe issues and challenges related to machine learning such as data characteristics, model selection, model complexity, etc.
- CLO2 Compare strengths and weaknesses of popular machine learning approaches.
- CLO3 Explain the underlying mathematical concepts in machine learning algorithms.
- CLO4 Select and implement machine learning algorithms to address real-world problems.

Section 3 Course Management

1. Course Description

Probability and maximum likelihood estimate; K-nearest neighbor methods; Decision tree and basic information theory; Regressions; Ensemble learning algorithms including bagging, boosting and random forest; Support vector machines; Perceptron and neural networks; Deep learning; Unsupervised learning; Semi-supervised learning; PAC learning and VC dimension ความน่าจะเป็น และ ภาวะน่าจะเป็นสูงสุด วิธีการค้นหาเพื่อนบ้านใกล้สุด เค ตัว ต้นไม้ตัดสินใจ และ ทฤษฎี สารสนเทศเบื้องต้น การถดถอย ขั้นตอนวิธีทั้งมวล ประกอบด้วย แบ็คกิ้ง บูสติ้ง และ การตัดสินใจด้วยกลุ่มต้นไม้ แบบสุ่ม ซัพพอร์ตเวกเตอร์แมชชีน โครงข่ายประสาทเทียม การเรียนรู้เชิงลึก การเรียนรู้แบบไม่มีผู้สอน การเรียนรู้ แบบกึ่งมีผู้สอน การเรียนรู้แบบการประมาณ ที่อาจจะถูกต้อง และ มิติ วีซี

2. Credit hours per trimester

	cture ur(s))	Laboratory/field trip/internship (Hour(s))	Self-study (Hour(s))
48		0	96

- 3. Number of hours that the lecturer provides individual counseling and guidance.
- 1 hour/week

Section 4 Development of Students' Learning Outcome

- 1. Short summary on the knowledge or skills that the course intends to develop in students (CLOs)
 - By the end of the course, students will be able to:
 - CLO1 Describe issues and challenges related to machine learning such as data characteristics, model selection, model complexity, etc.

 CLO2 Compare strengths and weaknesses of popular machine learning approaches.

 CLO3 Explain the underlying mathematical concepts in machine learning algorithms.
 - CLO4 Select and implement machine learning algorithms to address real-world problems.
- 2. Teaching methods for developing the knowledge or skills specified in item 1 and evaluation methods of the course learning outcomes

ICCS461	Teaching methods	Evaluation Methods
CLO1	Reading assignment, interactive lecture, case	Quiz, Homework,
	studies, quiz, group activities, group discussion	Examination
CLO2	Reading assignment, interactive lecture, case	Quiz, Homework,
	studies, quiz, group activities, group discussion	Examination
CLO3	Reading assignment, interactive lecture, case	Quiz, Homework,
	studies, quiz, group activities, group discussion	Examination
CLO4	Reading assignment, interactive lecture, case	Quiz, Homework,
	studies, quiz, group activities, group discussion	Examination

Section 5 Teaching and Evaluation Plans

1. Teaching plan

		Numbe	er of Hours		
	Topic		Lab/Field	Teaching	Lecturer
Week		Lecture	Trip/Intern	Activities/	
		Hours	ship	Media	
			Hours		
1	Probability and maximum	4	0	Reading	TBA
	likelihood estimate			assignment,	
2	K-nearest neighbor methods	4	0	interactive	
3	ML and information theory	4	0	lecture, quiz,	
4	Decision tree	4	0	group activities, case	
5	Regressions	4	0		
6	Ensemble learning algorithms	4	0	studies, group	
7	Perceptron	4	0	discussion	
8	Support vector machines	4	0		
9	Neural networks and deep	4	0		
	learning				
10	Semi-supervised learning	4	0		
11	Unsupervised learning	4	0		
12	Learning theory	4	0		
	Total	48	_		

- 2. Plan for Assessing Course Learning Outcomes
 - 2.1 Assessing and Evaluating Learning Achievement
 - a. Formative Assessment
 - Worksheet
 - Class discussion
 - b. Summative Assessment

(1) Tools and Percentage Weight in Assessment and Evaluation

Learning Outcomes	Assessment Methods	Assessme (Percer	
CLO1 Describe issues and challenges related to machine learning such as data characteristics, model selection, model	Homework & Quiz	5	25
complexity, etc.	Examination	20	
CLO2 Compare strengths and weaknesses of popular machine learning approaches.	Homework & Quiz	5	25
	Examination	20	
CLO3 Explain the underlying mathematical	Homework &	5	25
concepts in machine learning algorithms.	Quiz		
	Examination	20	
CLO4 Select and implement machine learning	Homework &	5	25
algorithms to address real-world problems.	Quiz		
	Examination	20	
			100

(2) Grading System

Grade	Achievement	Final Score (% Range)	GPA
A	Excellent	90-100	4.0
"B+	.Very good	85-89	3.5
В	Good	80-84	3.0
C+	Fairly good	75-79	2.5
С	Fair	70-74	2.0
D+	Poor	65-69	1.5
D	.Very Poor	60-64	1.0
F	Fail	Less than 60	0.0

(3) Re-examination (If course lecturer allows to have re-examination)

N/A - (Not applicable with MUIC)

3. Student Appeals

N/A

Section 6 Teaching Materials and Resources

- 1. Textbooks and/or other documents/materials
 - *None; Lecture notes will be provided by the lecturers.*
- 2. Recommended textbooks and/or other documents/materials

Selected readings from pertinent scientific journals and textbooks or video clips, as posted on the course's e-learning site

3. Other Resources (If any) N/A

Section 7 Evaluation and Improvement of Course Management

- 1. Strategies for evaluating course effectiveness by students
 - 1.1 Student feedback of instructors, teaching methods and materials, and course content through MUIC student evaluation forms
- 2. Strategies for evaluating teaching methods
 - 2.1 Evaluation of effectiveness based on student evaluation scores and comments
 - 2.2 Evaluation through peer observations by co-instructor or other Division faculty
- 3. Improvement of teaching methods
 - 3.1 Adjustments based on student feedback, personal observations, comments from peer observations and discussions with supervisor and/or other Division faculty in one-onone and/or group meetings as specified by MUIC guidelines
- 4. Verification process for evaluating students' standard achievement outcomes in the course
 - 4.1 Verification through student performance on assessments based on MUIC/Division standards
- 5. Review and plan for improving the effectiveness of the course
 - 5.1 Course instructors (and coordinator/supervisor) will meet to discuss results of student evaluations and student performance based on learning outcomes in order to identify point for improvement
 - 5.2 Strategy for improvement set according to MUIC/Division guidelines

Appendix Alignment between Courses and General Education courses

<u>Table 1</u> The relationship between course and Program Learning Outcomes (PLOs)

	Program Learning Outcomes (PLOs)					
	PLO1 PLO2 PLO3 PLO4 PLO5 PLO6					
(ICCS461)			R/P		R/P	R/P

<u>Table 2</u> The relationship between CLOs and Program LOs (Number in table = Sub LOs)

ICCS461		Learning Outcomes in the Computer Science Program					
	1	2	3	4	5	6	
CLO1 Describe issues and challenges			3.1 3.2				
related to machine learning such as data characteristics, model selection, model complexity, etc.			3.2				
CLO2 Compare strengths and weaknesses of popular machine learning approaches.					5.4	6.2	
CLO3 Explain the underlying mathematical concepts in machine learning algorithms.					5.3	6.3	
CLO4 Select and implement machine learning algorithms to address real-world problems.					5.1 5.4	6.1 6.4	

Table 3 The description of Prog	gram LOs and Sub LOs of the course
CS LOs	Sub LOs
PLO1 Demonstrate proficiency in	1.1 Understand the format of communication in
scientific communication.	computer science.
	1.2 Communicate inchoate ideas to others for further
	development and refinement.
	1.3 Describe computing concepts to members of the
	community with accuracy and clarity.
PLO2 Carry out work with scientific	2.1 Recognize the concepts of intellectual property,
integrity and professionalism.	copyright licenses, and law pertaining to information
	technology.
	2.2 Provide ethical reasoning and awareness of issues
	surrounding bias, fabrication, falsification, plagiarism,
	outside interference, censorship, and information
	privacy.
	2.3 Demonstrate good time management, self-
	regulation, autonomy, and professional code of
	conduct of the discipline.
PLO3 Appraise scientific	3.1 Apply quantitative reasoning using mathematical
information critically.	methods and scientific facts, taking into consideration
	multiple perspectives.
	3.2 Provide a succinct description of the issue (i.e., a
	problem, a question, or a hypothesis), separating facts
	and assumptions.
	3.3 Differentiate source, validity, objectives, key
	arguments, and consequences of a piece information.
	3.4 Create a response to the issue by synthesizing
	collected information critical to the assessment.
PLO4 Use a teamwork mindset in	
the context of computing.	
PLO5 Execute common computing	5.1 Carry out the process of converting a
methodologies appropriate for a	process/algorithm to a machine-executable program.
problem scenario.	5.2 Use suitable techniques for correctness and cost
	analysis of computer programs.
	5.3 Deconstruct a computer system to reveal its
	structure, components, and process of construction.
	5.4 Select common computing techniques (e.g.,
	standard algorithms, data structures, design patterns,
	programing style, and computing paradigms)
	appropriate for a given problem scenario.
PLO6 Formulate computational	6.1 Model a given problem using suitable abstractions,
solutions to novel situations	including problem decomposition, in the context of
grounded on the foundation of	computing.
computer science.	6.2 Compare the relative strengths and weaknesses
	among multiple designs or implementations.

Elective Machine Learning ICCS461

Undergraduate Program Mahidol University International College Science Division

CS LOs	Sub LOs
	6.3 Assess the feasibility and efficacy of a
	computational solution based on its design and
	implementation.
	6.4 Devise computational solutions to novel situations
	using knowledge and experience in computer science.