

TQF 3 Course Specifications

Section 1 General Information

1. Course code and course title

ICCS 495 หัวข้อทางวิทยาการคอมพิวเตอร์ 5 Thai

ICCS 495 Topics in Computer Science V English

- 2. Number of credits 4 (4-0-8)
- 3. Program and type of subject
 - 3.1 Program Undergraduate Degree (International Program)
 - 3.2 Type of Subject <u>Elective course</u>
- 4. Course Coordinator and Course Lecturer
 - Course Coordinator Kritya Bunchongchit 4.1
 - 42 Kritya Bunchongchit Course Lecturer
- 5. Trimester/ Year of Study

5.1 Trimester Once per year / Junior or senior

- 5.2 Course Capacity Approximately 30 students None
- 6. Pre-requisite
- 7. Co-requisites N/A
- 8. Venue of Study Mahidol University, Salaya campus

Section 2 Goals and Objectives

1. Course Goals

- Create linkage between theory and practice by covering trending topics and emerging knowledge in the field
- Encourage complex problem solving in practical situations
- Motivate life-long learning by exploring deeper into a specific area of computer science

2. Objectives of Course Development/Revision

2.1 Course Objectives

Offering adaptability of course contents to respond to new knowledge and emerging trends in the field

2.2 Course-level Learning Outcomes: CLOs

By the end of the course, students will be able to (CLOs)

- Identify features that make these special topics distinctive from the CLO1 1. general computer science knowledge and skills.
- 2. Differentiate sub-problems that need additional knowledge from CLO2 the parts that can be solved with common knowledge and techniques.
- 3. CLO3 Create a feasible solution for a non-trivial problem in the field.

Section 3 Course Management

1. Course Description

Topic(s) from areas of computer science chosen according to current research and industrial trends

ี้หัวข้อในวิทยาศาสตร์คอมพิวเตอร์ ซึ่งกำลังเป็นกระแสในงานวิจัยและภาค อุตสาหกรรมปัจจุบัน

2. Credit hours per trimester

Lecture (Hour(s))	Laboratory/field trip/internship (Hour(s))	Self-study (Hour(s))
48	0	96

3. Number of hours that the lecturer provides individual counseling and guidance. 1 hour/week

Section 4 Development of Students' Learning Outcome

1. Short summary on the knowledge or skills that the course intends to develop in students (CLOs)

By the end of the course, students will be able to

- 1. CLO1 Identify features that make these special topics distinctive from the general computer science knowledge and skills.
- 2. CLO2 Differentiate sub-problems that need additional knowledge from the parts that can be solved with common knowledge and techniques.
- 3. CLO3 Create a feasible solution for a non-trivial problem in the field.
- 2. Teaching methods for developing the knowledge or skills specified in item 1 and evaluation methods of the course learning outcomes

Course	Teaching methods	Evaluation Methods		
Code				
CLO1	Lecture, reading assignment, class discussion	Written assignment, quiz, written		
		examination		
CLO2	Lecture, reading assignment, in-class	Written assignment, quiz, written		
	exercise, class discussion	examination		
CLO3	Case study, solution sharing, SWOT analysis	Term project		

Elective Course Course Title: Topics in Computer Science V Course Code ICCS 495

Undergraduate Program Mahidol University International College Science Division

1. Teaching plan

Section 5 Teaching and Evaluation Plans

		Number of Hours			
Week	Topic	Lecture Hours	Lab/ Field Trip/ Internship	Teaching Activities / Media	Lecturer
		110015	Hours		
1	Course introduction	4	0		
2		4	0		
3	Topic 1	4	0		
4			0		
5		4	0		
6	Topic 2	4	0		Kritya
7		4	0		Bunchongchit
8	Progress report on term project	4	0		
9		4	0		
10	Topic 3	4	0		
11	1		0		
12	Term project presentation	4	0		
	Total	48	0		

2. Plan for Assessing Course Learning Outcomes

2.1 Assessing and Evaluating Learning Achievement

- a. Formative Assessment
 - Class discussion
 - Reflective question
 - Answer comparison
 - In-class exercise

b. Summative Assessment

(1) Tools and Percentage Weight in Assessment and Evaluation

Learning Outcomes	Assessment Methods	Assessr Rati (Percent	0	
CLO1 Identify features that make these special topics	Written assignment	5		
distinctive from the general computer science	Quiz	10	35	
knowledge and skills.	Examination	15		
CLO2 Differentiate sub-problems that need	Written assignment	5		
additional knowledge from the parts that can	Quiz	10	25	
be solved with common knowledge and techniques.	Examination	10	23	
CLO3 Create a feasible solution for a non-trivial	Term project	30	40	
problem in the field.	Examination	10	40	
Total			100	

(2)	Grading	System
(-)	Grading	System

ing bysten			
Grade	Achievement	Final Score (% range)	GPA
А	Excellent	90-100	4.0
B+	Very good	85-89	3.5
В	Good	80-84	3.0
C+	Fairly good	75-79	2.5
С	Fair	70-74	2.0
D+	Poor	65-69	1.5
D	Very poor	60-64	1.0
F	Fail	Less than 60	0.0

(3) Re-examination (If course lecturer allows a re-examination) <u>N/A - (Not applicable with MUIC)</u>

3. Student Appeals

N/A

Section 6 Teaching Materials and Resources

- 1. Textbooks and/or other documents/materials
 - Assigned reading set by the instructor in the designated e-learning website
- 2. Recommended textbooks and/or other documents/materials

As posted on the course's e-learning site

3. Other Resources (If any) As posted on the course's e-learning site

Section 7 Evaluation and Improvement of Course Management

- 1. Strategies for evaluating course effectiveness by students
 - 1.1. Student feedback of instructors, teaching methods and materials, and course content through MUIC student evaluation forms
- 2. Strategies for evaluating teaching methods
 - 2.1. Evaluation of effectiveness based on student evaluation scores and comments
 - 2.2. Evaluation through peer observations by co-instructor or other Division faculty
- 3. Improvement of teaching methods
 - 3.1. Adjustments based on student feedback, personal observations, comments from peer observations and discussions with supervisor and/or other Division faculty in

one-on-one and/or group meetings as specified by MUIC guidelines

- Verification process for evaluating students' standard achievement outcomes in the course
 4.1. Verification through student performance on assessments based on MUIC/Division standards
- 5. Review and plan for improving the effectiveness of the course
 - 5.1. Course instructors (and coordinator/supervisor) will meet to discuss results of student evaluations and student performance based on learning outcomes in order to identify point for improvement
 - 5.2. Strategy for improvement set according to MUIC/Division guidelines

Appendix Alignment between Courses and General Education courses

Table 1 The relationship between course and Program Learning Outcomes (PLOs)

	Program Learning Outcomes (PLOs)					
	PLO1 PLO2 PLO3 PLO4 PLO5 PLO6					
ICCS 495				М	М	Р

<u>Table 2</u> The relationship between CLOs and Program LOs (Number in table = Sub LOs)

(Course Code)		Learning Outcomes in Computer Science (CS-LOs)					
	1	2	3	4	5	6	
CLO1 Identify features that make these special topics							
distinctive from the general computer science					1	✓	
knowledge and skills.							
CLO2 Differentiate sub-problems that need additional							
knowledge from the parts that can be solved with					1		
common knowledge and techniques.							
CLO3 Create a feasible solution for a non-trivial problem in				1	1	1	
the field.				Ū	Ĵ	·	

Table 3 The description of CS LOs and Sub LOs of the course

CS LOs	Sub LOs
PLO4 Use a teamwork mindset in the context of computing.	
PLO5 Execute computing methodologies appropriate for a problem scenario.	5.4 Select common computing techniques (e.g., standard algorithms, data structures, design patterns, programing style, and computing paradigms) appropriate for a given problem scenario.
PLO6 Formulate computational solutions to novel situations grounded on the foundation of	6.1 Model a given problem using suitable abstractions, including problem decomposition, in the context of computing.
computer science.	6.2 Compare the relative strengths and weaknesses among multiple designs or implementations.
	6.3 Assess the feasibility and efficacy of a computational solution based on its design and implementation.
	6.4 Devise computational solutions to novel situations using knowledge and experience in computer science.