Course Syllabus

1. Program of Study Bachelor of Science Program

Bachelor of Arts Program

Bachelor of Business Administration Program

Bachelor of Nursing Science Program

Faculty/Institute/College Mahidol University International College

2. Course Code ICNS 102

Course Title Principles of Mathematics

3. Number of Credits 4(4-0-8)(Lecture/Lab/Self study)

4. Prerequisite (s) ICNS 100 or equivalent

5. Type of Course General Education Course

6. Session 3rd trimester

7. Conditions -

8. Course Description

A brief review of trigonometry; limits and continuity; differentiation and its techniques; derivatives of functions such as trigonometric, logarithmic, exponential and inverse trigonometric; sketching graph; applications of the derivative; antiderivative and integration; area under a curve and between two curves.

9. Course Objective (s)

After successful completion of this course, students should be able to

- 9.1 describe the number system, solve inequalities and absolute value problems.
- 9.2 do operations on functions and draw graphs.
- 9.3 find limits of algebraic and trigonometric functions.
- 9.4 explain the relationship between tangents, derivatives and rates of change.
- 9.5 find derivatives of algebraic and trigonometric functions using the definition and differentiation formula.

- 9.6 find higher order derivatives, increments and differentials.
- 9.7 apply derivatives to solve problems in related rates, extreme values, approximations and curve sketching.
- 9.8 integrate algebraic and trigonometric functions.
- 9.9 find areas under a curve and between curves.

10. Course Outline

Week	Topic	Hour			
		Lecture	Lab	Self-	Instructor
				Study	
1	Real Numbers, intervals,	4	0	8	Nardtida
	inequalities, absolute value and				
	graph				
2	Slope of a line, equations of	4	0	8	Nardtida
	straight lines, distance, circle,				
	equation of the form $y = ax^2 +bx$				
	+ c				
3	Operations and graphs of	4	0	8	Nardtida
	function, intuitive approach to				
	limits				
4	Computational techniques for	4	0	8	Nardtida
	limits, continuity, limits and				
	continuity of trigonometric				
	functions, tangent lines				
5	Rates of change, derivative,	4	0	8	Nardtida
	technique of differentiation,				
	derivative of trigonometric				
	functions				
6	Midterm examination	4	0	8	
	Chain rule, implicit differentiation				Nardtida
7	Δ -notation, differentials, related	4	0	8	Nardtida

	rates, intervals of increase and				
	decrease, concavity				
8	Relative extrema, first and	4	0	8	Nardtida
	second derivative tests, graphs				
	of polynomials and rational				
	functions, maximum and				
	minimum value of a function,				
	applied maximum and				
	minimum problems				
9	Rolle's Theorem, Mean Value	4	0	8	Nardtida
	Theorem, antiderivatives,				
	definite integrals, integration by				
	substitution, sigma notation				
10	Areas as limits, definite integral,	4	0	8	Nardtida
	First Fundamental Theorem of				
	Calculus, evaluating definite				
	integrals by substitution				
11	Mean Value Theorem of	4	0	8	Nardtida
	Integrals, Second Fundamental				
	Theorem of Calculus, area				
	between two curves				
	Review				
	Total	44	0	88	Nardtida
	Final e	examination	1		<u>I</u>

11. Teaching Method (s)

11.1 Lecturing with student participation in solving problems and participation in questions and answers.

12. Teaching Media

- 12.1 Transparencies.
- 12.2 Workouts and notes on blackboards.

13. Measurement and evaluation of student achievement

Student achievement is measured and evaluated by

- 13.1 the ability to describe the number system, solve inequalities and absolute value problems.
- 13.2 the ability to do operations on functions and draw graphs.
- 13.3 the ability to find limits of algebraic and trigonometric functions.
- 13.4 the ability to explain the relationship between tangents, derivatives and rates of change.
- 13.5 the ability to find derivatives of algebraic and trigonometric functions using the definition and differentiation formula.
- 13.6 the ability to find higher order derivatives, increments and differentials.
- 13.7 the ability to apply derivatives to solve problems in related rates, extreme values, approximations and curve sketching.
- 13.8 the ability to integrate algebraic and trigonometric functions.
- 13.9 the ability to find areas under a curve and between curves.

Student's achievement will be graded according to the faculty and university standard using the symbols: A, B+, B, C+,C,D+, D, and F.

Students must have attended at least 80% of the total class hours of this course.

Assessment made from the set-forward criteria:- students with 80% or more will receive

Grade A.

Ratio of mark

Participation 10%Midterm 40%Final 50%Total 100%

14. Course evaluation

- 14.1 Students' achievement as indicated in number 13 above.
- 14.2 Students' satisfaction toward teaching and learning of the course using questionnaires.

15. Reference (s)

- 1. Anton, Howard . (1984) . Calculus (4th ed) . John Wiley & Sons : New York,
- 2. Keedy and Bittinger, Algebra and Trigonometry: A Functions Approach., Addison-

Wesley. Publishing Company, Reading, Massachusetts.

3. Thomas, George B., Dr. .<u>Elements of Calculus and Analytic Geometry</u>, revised ed : Addison & Wesley Publishing Company, Inc.

16. Instructor (s)

16.1 Assoc. Prof. Nardtida Tumrasvin

17. Course Coordinator

Assoc. Prof. Nardtida Tumrasvin